DIAアカウントをお持ちの場合、サインインしてください。

サインイン

ユーザーIDをお忘れですか? or パスワードをお忘れですか?

Boston Convention and Exhibition Center

2013年6月23日 (日) 午前 8:30 - 2013年6月27日 (木) 午後 12:45

415 Summer Street, , Boston, MA 02210 , USA

DIA 2013 49th Annual Meeting: Advancing Therapeutic Innovation and Regulatory Science

Some Innovative Approaches to Handling Missing Data Problems in Clinical Trials

Session Chair(s)

Peiling  Yang, PHD

Peiling Yang, PHD

Supervisory Mathematical Statistician

FDA, United States

In this session, innovative alternative designs will be proposed that may be applicable to trials in certain disease areas to mitigate missing data problems. With regard to sophisticated analyses, such as multiple imputation and pattern mixture model, which require simulating data sets to impute missing values, an illustration will be given as to how to pre-specify the computer algorithms and capture simulated data values in ADaM to enhance the traceability and reproducibility.

Learning Objective : Recognize the impact of missing data on the trial outcomes; Describe alternative approaches to mitigate dropouts; Explain how to pre-specify computer algorithms and capture simulated data values in ADaM.

Speaker(s)

Balaji  Parameshvaran, MD

Balaji Parameshvaran, MD

DIA, United States

Senior AMS Manager

Jinglin  Zhong, PHD

Design Consideration to Drop Out Problem in Psychiatric Trials

Jinglin Zhong, PHD

FDA, United States

Mathematical Statistician, Office of Biostatistics, OTS, CDER

Sonia  Davis, DrPH

Academic Perspective

Sonia Davis, DrPH

RTI International, United States

Senior Research Statistician

Mat D. Davis, PHD, MS

Pre-specified, Traceable and Reproducible Multiple Imputation and Pattern Mixture Models Using ADaM and Define.XML

Mat D. Davis, PHD, MS

Teva, United States

Associate Director, Biostatistics

最新情報や機会を逃さないで

DIAのメールを購読すれば、常に最新の業界情報やイベント情報を得ることができます。