

Deputy Director for Research and Policy
Office of New Drug Quality Assessment
CDER/FDA

Outline

- Background on ICH Q8/Q8R
 - Quality by Design (QbD)
- FDA experience with QbD
 - Examples from CMC Pilot
 - Recent ONDQA experience
- Remaining challenges
- Concluding comments

3

ICH Q8 - History

- ICH Quality Vision July 2003 (Brussels)
 Develop a harmonized pharmaceutical quality system applicable across the lifecycle of the product emphasizing an integrated approach to risk management and science
- Q8 Step 2 (draft for comment) Nov 2004
- Q8 Step 4 (finalized) Nov 2005
- Q8 Annex Step 2 (draft for comment) Nov 2007
- Q8(R1) Step 4 (final) Nov 2008
- Q8(R2) Revision for editorial errors Aug 2009

ICH Q8 Core Document - Content

- Provides guidance on the contents of Section 3.2.P.2 (Pharmaceutical Development)
- Describes good practices for pharmaceutical product development
- Introduces concepts of
 - Design space
 - Flexible regulatory approaches
 - Quality Risk Management (Q9)
- Does not discuss Quality by Design

Key Points from ICH Q8 Core Document

- Quality cannot be tested into products, it should be built in by design
- Pharmaceutical development provides the scientific understanding to support the establishment of design space, specifications and manufacturing controls
- Aspects of pharmaceutical development include:
 - Components of Drug Product
 - Drug Product Development
 - Manufacturing Process Development
 - Container Closure System
 - Microbiological Attributes
 - Compatibility

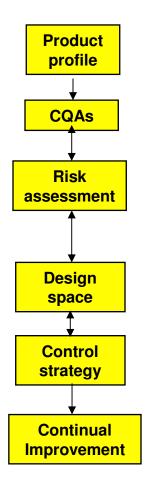
6

ICH Q8(R2) - Content

 Defines and describes principles of Quality by Design (QbD)

Quality by Design is a systematic approach to development that begins with predefined objectives and emphasizes product and process understanding and process control, based on sound science and quality risk management

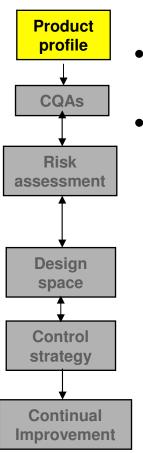
- Provides further clarification of key concepts of Q8
- Provides illustrative examples



Key Points from ICH Q8 Annex Document

- Minimal Approach
 - Defining the quality target product profile
 - Identify potentially critical quality attributes of drug product
 - Determine critical quality attributes of the drug substance and raw materials
 - Selecting an appropriate manufacturing process
 - Defining a control strategy
- Enhanced (QbD) Approach
 - Systematic evaluation and understanding of the formulation and manufacturing process
 - Using the enhanced understanding with risk management to establish an appropriate control strategy
 - Can support flexible regulatory approaches

Example QbD Approach - ICH Q8(R2)

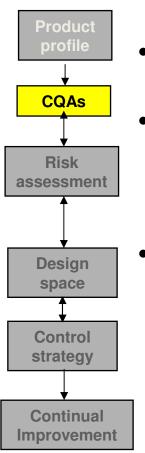


- Target the product profile
- Determine critical quality attributes (CQAs)
- Link raw material attributes and process parameters to CQAs and perform risk assessment
- Develop a design space
- Design and implement a control strategy
- Manage product lifecycle, including continual improvement

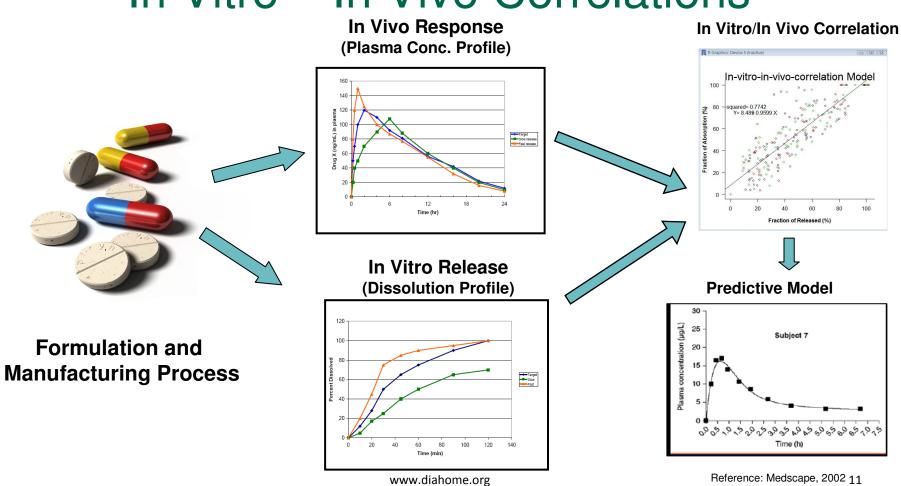
Quality Target Product Profile

"Begin with the end in mind"

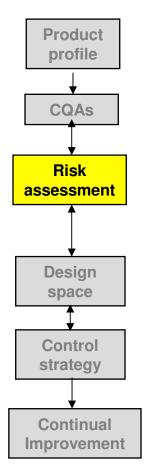
Summary of the quality characteristics of a drug product to ensure safety and efficacy


Includes, but not limited to:

- Dosage form
- Route of administration
- Pharmacokinetic characteristics
 - e.g., dissolution, aerodynamic performance
- Quality characteristics for intended use
 - e.g., sterility, purity
- Patient needs elderly, children
- Amount of drug per dose
- Desired dosing schedule
- Route of administration
- Safety requirementshome.org

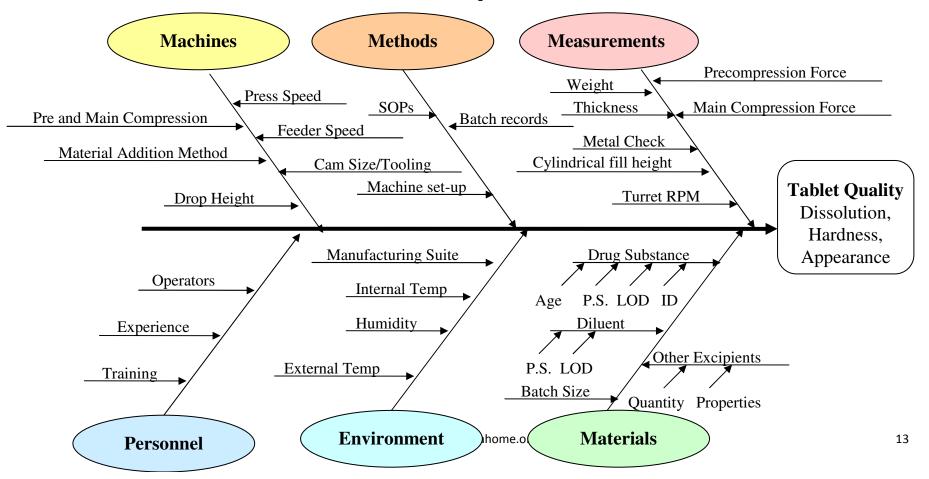

Critical Quality Attributes (CQAs)

- Physical, chemical, biological or microbiological property or characteristic
- Drug product, drug substance, intermediates, and excipients can possess CQAs
 - Directly affect product quality
 - Affect downstream processability
- Drug product CQAs affect product quality, safety, and/or efficacy
 - Attributes describing product purity, potency, stability and release
 - Additional product specific aspects (e.g., adhesive force for transdermal patches)



Defining CQAs Example: In Vitro – In Vivo Correlations

Risk Management



- A systematic process for the assessment, control, communication and review of risks to the quality of the drug product
- Evaluation of risk to quality should:
 - be based on scientific knowledge
 - link to the protection of the patient
 - Extend over the lifecycle of the product
- Typically conducted with an integrated group of experts, including development and manufacturing

Risk Assessment Example #1 Ishikawa Diagram

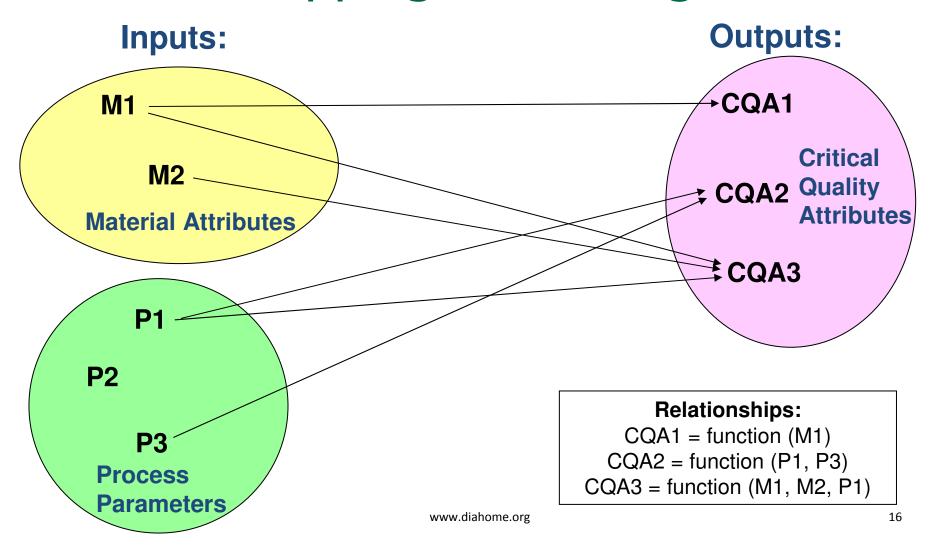
Tablet Compression

Risk Assessment Example #2 Failure Mode and Effects Analysis

Moisture Sensitive Crystalline Product

Category	Process Parameter	Severity S (1-5)	Occurrence O (1-5)	Detection D (1-5)	Risk priority number S*O*D	Criticality rank
Crystalliztn	Residual solvent	5	4	3	60	1
	Induction time	4	3	2	24	6
	Anti-solvent addition time	5	3	2	30	4
	Mixing	2	2	1	4	11
Isolation/ drying	Temperature during crystal drying	4	4	2	32	3
	Solids transfers	3	1	1	1	13
	Washing effectiveness	2	1	1	2	15
Handling/ storage	Relative humidity	5	3	3	45	2
	Inerting	4 www.d	ahome.org	3	24	6 1

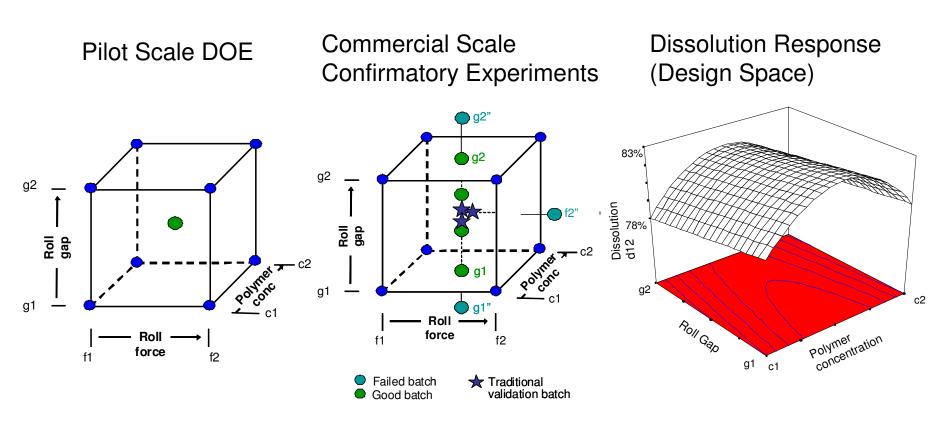
Design Space



Definition

- The multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality.
- Regulatory flexibility
 - Working within the design space is not considered as a change
- Important to note
 - Design space is proposed by the applicant and is subject to regulatory assessment and approval

Mapping the Linkage



Design Space Determination

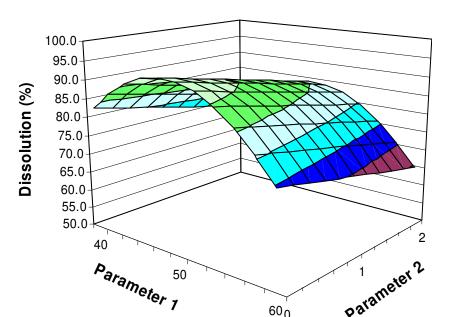
- First-principles approach
 - combination of experimental data and mechanistic knowledge of chemistry, physics, and engineering to model and predict performance
- Non-mechanistic/empirical approach
 - Statistically designed experiments (DOEs)
 - Linear and multiple-linear regression
- Scale-up correlations
 - a semi-empirical approach to translate operating conditions between different scales or pieces of equipment
- Risk Analysis
 - Determine significance of effects
- Any combination of the above

Example - Establishing Design Space

Input Variables: Polymer concentration, Roll gap, Roll force

Responses: Porosity, Compressibility, Dissolution, Hardness

Describing Design Spaces

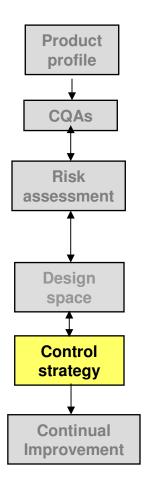

- Linear Ranges of Parameters
- Mathematical Relationships
- Time-dependent functions
- Combinations of variables
 - e.g., Principle components of multivariate model
- Scaling Factors
- Single or multiple unit operations

The applicant decides how to describe and present the design space

Example – Describing Design Spaces

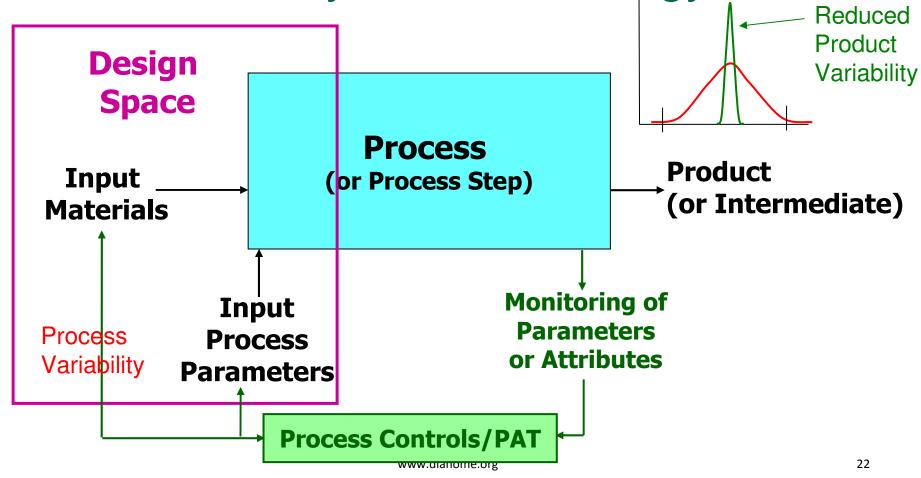
Surface Plot

Contour Plot


- Design space can be described as a mathematical function or simple parameter range
- Operation within design space will result in a product meeting the defined quality attributes

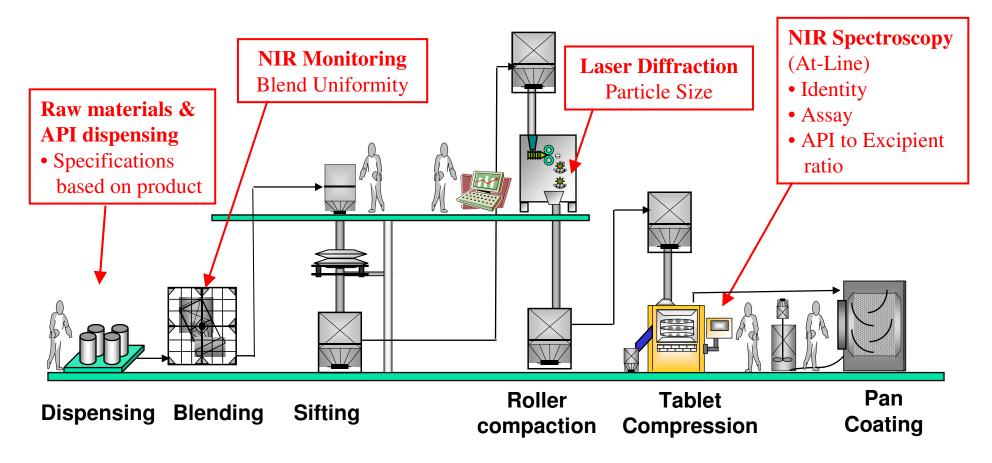
 www.diahome.org

20


Control Strategy

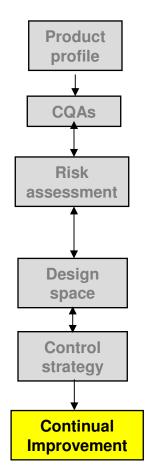
- A planned set of controls, derived from current product and process understanding, that assures process performance and product quality (ICH Q10)
- Control strategy can include
 - parameters and attributes related to drug substance and drug product materials and components
 - facility and equipment operating conditions
 - in-process controls
 - finished product specifications
 - associated methods and frequency of monitoring and control

Design Space and Quality Control Strategy



Real Time Release Testing

- The ability to evaluate and ensure the quality of in-process and/or final product based on process data, which typically include a valid combination of measured material attributes and process controls ICH Q8(R2)
- Manufacturing flexibility
 - Increased manufacturing efficiency
 - Measure and control in real-time
- Increased assurance of quality
 - Science based release criteria
 - More representative of process



Control Strategy Example – Real Time Release

Continual Improvement

- Lifecycle risk management
 - Use development information as starting point
 - Update as experience gained
- Process tracking and trending
 - Statistical process control
 - Adjust trends before they become problems
- Knowledge management
- Model maintenance and updating

FDA Review Office Programs

- Office of New Drug Quality Assessment (ONDQA)
 - Pharmaceutical Quality Assessment System (PQAS)
 - 2005 CMC Pilot program
- Office of Biotechnology Products
 - 2008 Biotechnology Pilot Program
- Office of Generic Drugs
 - Question Based Review (QBR)
 - Workshops on QbD for generic drugs

ONDQA's CMC Pilot Program

- Objectives
 - o To provide participating firms an opportunity to submit CMC information demonstrating QbD
 - o To enable FDA to implement new QbD concepts
- Status complete
 - o First announced June 2005
 - o 9 original and 2(3) supplemental NDAs accepted
 - o 11 approved, 1 withdrawn for non-CMC reasons
- Common factors
 - o Submission of design space
 - o Use of risk assessment
 - o Proposals of regulatory flexibility under firm's quality system

CMC Pilot Observations

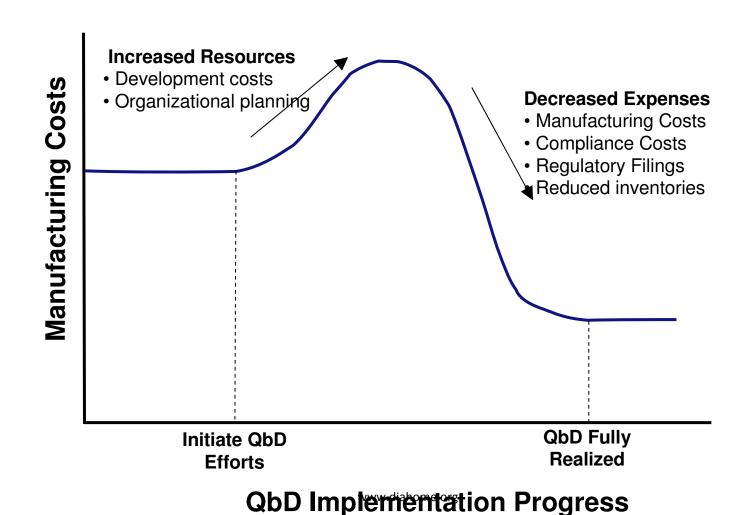
- Wide variety of design spaces proposed:
 - Most included drug product, some included drug substance
 - Most included process parameters, some included formulation components
 - Developed using varied experimental techniques
 & mathematical models
 - o Several utilized risk assessment in development
- Wide variety of control strategies utilized, including
 - o On-line analyzers
 - o In-process testing in lieu of end-product tests
 - o Real time release testing using PAT

Findings from CMC Pilot Program

- Provided valuable experience for industry and FDA in implementing QbD
 - o Elements of QbD in submissions
 - Risk assessments
 - Design spaces
 - Proposals for flexible regulatory approaches
 - o Risk-based regulatory decisions were enabled
- Learning has been incorporated into ICH Q8R
- Refinement of concepts still ongoing
 - o QbD applications within and outside of pilot program

Recent QbD Experiences-Outside the CMC Pilot

- Number of QbD meetings and applications have been increasing
- Number of submissions containing QbD elements received in 2008 & 2009 outside of pilot
 - 12 NDAs
 - 6 supplemental NDAs
- New proposals have contained challenging regulatory approaches
- Additional experience is helping to coalesce review approaches



Challenges for QbD

- Culture challenges
 - Move from prescriptive approach
 - More sharing of scientific and risk information
- Business Challenges
 - Business justification
 - Management Support
 - Budgeting silos across business units
- Implementation Challenges
 - Collaboration between functions
 - Experience with new concepts
 - Workload and resource limitations
- International harmonization

Potential Costs & Benefits of QbD

Concluding Thoughts

- FDA and ICH quality initiatives are enabling a fundamental paradigm shift in pharmaceutical manufacturing:
 - Quality control strategies based on product knowledge and process understanding
 - A more scientific and risk-based regulatory oversight
- Implementation of QbD is a win-win-win situation
 - Manufacturers Better understanding of product/process, more efficient process, reduced regulatory burden
 - Regulators providing regulatory flexibility without sacrificing quality
 - Patients increased assurance of product quality

Thank you!

Questions, comments, concerns: NewDrugCMC@fda.hhs.gov