Biosimilars, Regulatory Framework and Outcome So Far

Dedicated to your information and advancement.

Inger Mollerup
Vice President
Regulatory Affairs, Novo Nordisk

Disclaimer

The views and opinions expressed in the following PowerPoint slides are those of the individual presenter and should not be attributed to Drug Information Association, Inc. ("DIA"), its directors, officers, employees, volunteers, members, chapters, councils, Special Interest Area Communities or affiliates, or any organization with which the presenter is employed or affiliated.

These PowerPoint slides are the intellectual property of the individual presenter and are protected under the copyright laws of the United States of America and other countries. Used by permission. All rights reserved. Drug Information Association, DIA and DIA logo are registered trademarks or trademarks of Drug Information Association Inc. All other trademarks are the property of their respective owners.

Sep 28 2009
Manufacturing of biologics is complex – and each process is unique

- DNA Vector
- Cloning into DNA Vector
- Same AA - maybe the same genetic sequence
- Different purification protocol
- Downstream
- Different in-process controls
- Maybe a different formulation
- Large-Scale Fermentation
- Formulation
- Different recombinant cell system
 - e.g., bacterial or mammalian cell

Biological Products are complex, and the manufacturing process impacts product quality

- The expression system leaves “imprint” on the product
 - *S. cerevisiae, E. coli*, Mammalian cell lines
- The primary structure of the protein has intrinsic properties: same chemical environment leads to structurally same derivatives
 - De-amidated forms, oxidised forms, aggregates etc.
- Each manufacturing process has a unique combination of
 - Solvents, enzymes, column materials, pH, buffers etc.
 - Results in individual “fingerprint” of impurities
- Analytical methods must be developed to capture all relevant impurities
- Purification methods must be tailored to the host cell and manufacturing methodology applied
Comparability exercises:
Process changes versus biosimilar product

Stepwise Comparability exercise:
- Clinical Comparability
- Nonclinical Comparability
- Chemical Comparability

Complete Comparability exercise:
- Clinical Comparability
- Nonclinical Comparability
- Chemical Comparability

Biosimilars
- New:
 - DNA?
 - Cell line
 - Process Technology?
 - Fermentation process
 - Purification process
 - Analytics
 - Facilities
 - Formulation?
 - And - no history

Character of Change
- Low risk
- Frequent
- Supported by: Analytical and Process Data

- Highest risk
- Rare
- Extensive Data: Analytical, Process and Human data

Regulatory Frameworks
In Europe, the scientific complexity sets the requirements for documentation

- Simple
 - Chemicals
 - Recombinant DNA technology
 - General
 - Blood-derived incl. rec. FVIII and FIX

- Complex
 - Immunologicals (vaccines and allergens)
 - Advanced therapy (gene and cell therapy)

Biosimilars

Generic (essentially similar) Full Dossier

Europe has implemented science-based comparability approach encompassing both Quality, Non-clinical and Clinical Investigations

<table>
<thead>
<tr>
<th>TITLE</th>
<th>MAIN MESSAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guideline on Similar Biological Medicinal Products</td>
<td>- Unlike generics, biosimilars cannot be demonstrated to be “the same”</td>
</tr>
<tr>
<td>Guideline on Similar Biological Medicinal Products Containing Biotechnology-Derived Proteins as Active Substance: Quality Issues</td>
<td>- Minor differences acceptable, but must be justified</td>
</tr>
<tr>
<td>Guideline on Similar Biological Medicinal Products Containing Biotechnology-Derived Proteins as Active Substance: Nonclinical & Clinical Issues</td>
<td>- Direct comparisons limited to drug product</td>
</tr>
<tr>
<td></td>
<td>- Greater differences require more clinical data</td>
</tr>
<tr>
<td></td>
<td>- Head to head comparison to show</td>
</tr>
<tr>
<td></td>
<td>- Similar efficacy and efficacy</td>
</tr>
<tr>
<td></td>
<td>- Similar immunogenic characteristics</td>
</tr>
<tr>
<td></td>
<td>- Risk Management Program required</td>
</tr>
<tr>
<td></td>
<td>- Class-specific nonclinical and clinical requirements</td>
</tr>
<tr>
<td></td>
<td>- Study designs, post-marketing commitments etc.</td>
</tr>
</tbody>
</table>

Coagulation factors (FVIII and FIX) excluded from current guidelines
Clinical endpoints for comparative trials

- Clinical endpoints are linked to disease/mode of action
 - Insulin lowers blood glucose – measured directly in blood
 - hGH stimulates growth – measured when children grow
- One guidance document – hard to cover variety of diseases
 - Class specific guidance recommended (EMEA example)

Guideline on Similar Biological Medicinal Products Containing Biotechnology-Derived Proteins as Active Substance: Nonclinical & Clinical Issues

Biosimilar Approvals In Europe to Date:
For “6” biologics approved; 2 rejected; 3 withdrawn

<table>
<thead>
<tr>
<th>Trade Name</th>
<th>Common Name International Nonproprietary Name</th>
<th>Biosimilar Sponsor(s)</th>
<th>Reference Product</th>
<th>Decision</th>
<th>Decision Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnitrone®</td>
<td>somatropin</td>
<td>Sandoz</td>
<td>Genotropin®</td>
<td>Approved</td>
<td>April 12, 2006</td>
</tr>
<tr>
<td>Valtropin®</td>
<td>somatropin</td>
<td>BioPartners</td>
<td>Humatrope®</td>
<td>Approved</td>
<td>April 24, 2006</td>
</tr>
<tr>
<td>Alphesin®</td>
<td>Interferon alfa-2a</td>
<td>BioPartners</td>
<td>Roferon-A®</td>
<td>Negative Opin.</td>
<td>June 28, 2006</td>
</tr>
<tr>
<td>Abseamed®</td>
<td>Epoetin alfa</td>
<td>Hexal Medice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retacrit®</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Hospira EPO"</td>
<td>Epoetin zeta</td>
<td>Hospira Stada</td>
<td>Eprex®</td>
<td>Approved</td>
<td>Dec. 18, 2007</td>
</tr>
<tr>
<td>Silapor®</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Teva G-CSF"</td>
<td>Filgrastim</td>
<td>Teva Ratiopharm CT</td>
<td>Neupogen®</td>
<td>Approved</td>
<td>Sept. 15, 2008</td>
</tr>
</tbody>
</table>
US regulatory pathways..

- **Food Drug & Cosmetic (FD&C) Act**
 - NDA (incl. insulin and growth hormone)
- **Public Health Service (PHS) Act**
 - BLA (MAB’s, EPO, vaccines etc.)

- **505(j)**
 - Could be open to approval of similar versions of proteins approved under an NDA such as insulin and growth hormone

- **505(b) 2**
 - Rely on reference product data

- **No provisions for approval of similar versions of proteins approved under an BLA**

No framework for approval of bio-similar products in the US yet

- **Drugs**
 - No general pathway for follow-on biotech drugs established
 - Omnitrope (biosimilar hGH) approved under 505(b)(2) in 2006
 - Insulins – could be approved in similar manner

- **Biologics**
 - No provisions for approval of similar versions of proteins approved under an BLA
 - So far, no conclusion despite legislative activities in 2007

- **Main issues under discussion**
 - Clinical trials and comparability studies
 - Exclusivity
 - Interchangeability/automatic substitution

- **Latest development**
 - Jan 2009: New administration followed by
 - Eshoo-Barton Amendment (House)
 - Hagan-Enzi-Hatch Amendment (Senate)

Drugs: Chemical Entities and e.g. Insulin, hGH and Heparins
Biologics: e.g. EPO, Monoclonal Antibodies, Coagulation Factors
Rest of the world

- Australia: Adopted the EU guidelines 2006
- Malaysia: Guidance finalised August 2008
- Turkey: Guidance finalised August 2008
- Taiwan: Guidance finalised November 2008
- Japan: Guidance finalised March 2009
- Israel: Regulation published March 2009
- Canada: Second draft guidance March 2009
- Korea: Draft guidance published June 2009
- Singapore: Draft guidance published June 2009
- WHO: 3rd draft guidance discussed July 2009
- And more
- All are based on the comparability principles established by EMEA for biosimilars

Biosimilar lessons learned
Early version of Omnitrope® (somatropin)
Reference product: Genotropin (Pfizer)

- Early version of the product: 57% of patients developed antibodies against Omnitrope
 - Problem was residual host-cell protein
- Re-developed purification process
- Conducted a second phase 3 study
- Antibody levels reduced (comparable)
- Approved by EMEA, FDA, TGA – and recently by Health Canada and PMDA in Japan

Link between quality parameter (HCP) and clinical safety (immunogenicity) found in clinical studies

* Source: European Public Assessment Report

Alpheon (alpha interferon)
Reference product: Roferon (Roche)

- Differences in impurity profile were observed

 Key Clinical Data
 - PK (3 studies):
 supra-bioavailability (early study); comparable; inconclusive
 - PD (2 studies): PD equivalence/no PD equivalence
 - Safety&Efficacy:
 - Clinically and statistically significant difference in virological relapse rate found: more patients on Alpheon had relapse
 - Different rate of adverse events and laboratory-related events judged as clinically relevant

Clinical studies evaluating efficacy and safety demonstrated clinically meaningful differences leading to Rejection by EMEA

* Source: European Public Assessment Report
Marvel Insulins: Human Long, Rapid and Mix

- Not possible to conclude that purity is comparable to reference product
- Clinical (PK/PD) data: Significant differences in bioavailability compared to reference products
- File withdrawn from EMEA

PD studies demonstrated clinically meaningful differences
Clinical safety and efficacy study confirmed difference

* Source: European Public Assessment Report

Somatropin: New Thioether Variant Identified

- Thioether variant found in some hGH products (up to ~30%)
 - Hormotrop®, Yelit®, Cryotropin®
- Thioether variant not identified in
 - Saizen®
 - International standards: NIBSC 98/574 (r), NIBSC 80/505 (p), EP r-hGH CRS
- Thioether variant:
 - Not detected by compendial and other existing chromatographic methods – new methods required
 - Generated by high pH at elevated temperature (40 deg C)
 - Significantly reduced biopotency in rat model
- Analytical methods must be “tailor made”

New impurity identified with reduced biopotency
Change in Clinical efficacy & safety cannot be excluded

Because no two Biotech Products can be “the Same”

- **Approval standards necessary to protect patient safety**
 - Full comparability exercise needed (Quality, Nonclinical and Clinical)
 - Extrapolation to other indications needs to be scientifically justified and if necessary supported by clinical data
- **All protein drugs should be prescribed and given to patient using a unique name and be clearly identifiable.**
 - Product tracing and adverse event reporting
- **Pharmacovigilance**
 - Risk Management Plans and post-approval safety commitments equally relevant for innovator and biosimilar products
- **Label/Package Insert must be transparent and clear**
 - Provide overview of clinical data acquired with biosimilar vs reference
 - Clear guidance on interchangeability/substitutability based on data
- **Automatic substitution raises strong concerns**
 - No data to support repeated switches in “standard” comparability exercise
 - Fifteen countries across Europe have brought in new rules to prevent automatic substitution of biological medicines by biosimilars (Source: APM Health Europe, 21 February 2008).