Phase 0 Microdosing Studies with Renin Inhibitors

J. Chris Jensen
Consultant
Speedel Holding Ltd.
Basel, Switzerland

Disclaimer

The views and opinions expressed in the following PowerPoint slides are those of the individual presenter and should not be attributed to Drug Information Association, Inc. (“DIA”), its directors, officers, employees, volunteers, members, chapters, councils, Special Interest Area Communities or affiliates, or any organization with which the presenter is employed or affiliated.

These PowerPoint slides are the intellectual property of the individual presenter and are protected under the copyright laws of the United States of America and other countries. Used by permission. All rights reserved. Drug Information Association, DIA and DIA logo are registered trademarks or trademarks of Drug Information Association Inc. All other trademarks are the property of their respective owners.

Overview of Today’s Presentation

- Background of Speedel and Renin Inhibitors
- Speedel’s issues in choosing Microdosing
- Technical issues in using Microdosing
- Example of Microdosing using Renin Inhibitors
- Benefits of Microdosing from Speedel’s perspective
Background

- These studies were performed in 2004 before the CREAM Trial was published
- Speedel was a biopharmaceutical company with 61 employees with extensive use of external contractors
- Speedel’s first compound Aliskiren (Tekturna®/Rasilez®) was in Phase III development with Novartis
- There were several possible follow-up candidates to Aliskiren
- Speedel was bought by and integrated into Novartis in 2008

The Renin-Angiotensin System

Renin Specificity and Inhibition by Aliskiren

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>IC_{50} (nM)</th>
<th>Species (Renin)</th>
<th>IC_{50} (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renin</td>
<td>0.07</td>
<td>Human</td>
<td>0.6</td>
</tr>
<tr>
<td>Cathepsin D</td>
<td>500</td>
<td>Marmoset</td>
<td>2</td>
</tr>
<tr>
<td>Cathepsin E</td>
<td>>10,000</td>
<td>Dog</td>
<td>7</td>
</tr>
<tr>
<td>HIV-1 protease</td>
<td>>10,000</td>
<td>Rabbit</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guinea pig</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rat</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fish</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cat</td>
<td>>5000</td>
</tr>
</tbody>
</table>

Adapted from Jensen et al. Nature Reviews Drug Discovery 2008
Renin Inhibitors – PK/PD Relationship

![Graph](image-url)

Adapted from Nussberger et al. Hypertension 2002

Increasing Bioavailability Improves Dose-Response On Blood Pressure in Double Transgenic Rats

![Graph](image-url)

Source: Speedel – R&D Day 2006

Pros and Cons of Use of Microdosing

Microdosing should allow an early selection of potential clinical candidates based on human pharmacokinetic data

Pros: Absorption, Distribution, (Metabolism) and Elimination can be studied in Man (PK)
Cons: Does not reveal direct information on efficacy (PD)

Development time

Pros: Microdosing: From lab to man in < 9 months without expensive drug manufacturing and toxicology testing for Phase I
Cons: Tolerability and surrogate measures of efficacy cannot be assessed without adding another layer of development

Toxicology results for microdosing cannot be used for safety assessment for a classical Rising-Dose-Tolerability Study

Applicability of Results

The studies were performed prior to the completion of the CREAM Trial
Microdosing Partners

<table>
<thead>
<tr>
<th>Clinical Trial and Drug Formulations</th>
<th>Sponsor</th>
<th>Analytics (AMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharma Bio-Research Groningen, NL (PRA International)</td>
<td>Speedel Pharma, Basel, CH (Novartis AG, Basel, CH)</td>
<td>Xceleron Ltd., York, UK</td>
</tr>
</tbody>
</table>

Study Design for Bioavailability

- **Dose and Administration**
 - 6 Healthy Male Volunteers
 - Cross-over administration of Test Compound
 - 100 μg Test Compound containing 100 nCi 14C-RI
 - Oral Dose in Solution
 - Intravenous dose via 10 minute infusion
- **Analytics**
 - Concentration of « Total » 14C (Parent + metabolites)
 - Separation of Parent Drug from metabolites by HPLC for determination of « Parent » Drug

Toxicology Program

Mutagenicity Testing

Ames and Chromosomal Aberration

In-life

Dogs
- 2 mg/kg single dose, oral and intravenous
- Males and female animals
- EKG and clinical observation

Rats
- 2 mg/kg single dose, oral and intravenous
- Males and females
- Clinical observation and necropsy
Technical Issues Encountered

- Radioactive Synthesis
 - GMP Requirements
 - Major Difference in Synthesis of “hot” versus “cold” material
- Drug Formulation at Low Doses
 - Very dilute concentrations of drug (25 g/ml)
 - Drug absorption to containers and tubing
 - CRO selection - ability to work with radioactive formulations
- “Pooled” Sampling vs Individual Sampling
 - High cost per sample
 - Inter-subject variation
- Method Development for HPLC Extraction of Parent Drug and Metabolites
 - Long elution times up to 70 minutes per sample
 - Unknown profiles of possible metabolites

Sample Analysis – Pooling versus Individual Samples

- Two-step Approach
 - Pooled Samples
 - Total 14C measurement
 - HPLC for Parent Drug
 - Individual Measurements
 - Total 14C measurement
 - HPLC for Parent Drug
- Cost Considerations
 - Pooling – 8 samples
 - Individual – 240 samples
HPLC Separation of Parent Drug and Metabolites

Determination of Parent Drug and Metabolites

Microdosing – Individual Variation following Intravenous Dosing of SPP601
Microdosing of SPP601 – Urinary Excretion of 14C

Mean Urine Excretion

Cumulative % dose vs. Time (h)

IV dose vs. Oral dose

Plasma Levels of SPP601, SPP630, and SPP635 Following Single Oral and IV Microdoses (100 g) in Male Subjects

SPP635: Plasma Concentration-Time Curves in Man Following Single Oral Doses

Relative Plasma Concentration vs. Hours

SPP635 Single Dose at Therapeutic Level vs. SPP635 Microdosing

Source: Speedel R&D Day 2006
Benefits to Speedel in Using Microdosing

- Enabled the selection of the best of three candidates for further clinical development in a short period of time
- Gained valuable information in man for the future development of Renin inhibitors
- Decreased the amount of time and resources required for drug manufacturing and toxicology testing by 1/3
- Decreased risk of selecting the wrong candidate while increasing the chance of selecting the right candidate for clinical research

Contact

Thank you for your attention

Dr. J. Chris Jensen
Gator Development and Consulting GmbH
Weihermatt 33
CH-6343 Rotkreuz
Switzerland
Tel.: +41 (41) 720 0275
Email: chris.jensen@gatordc.com