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Introduction

How are clinical trials similar to missiles?
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Introduction

How are clinical trials similar to missiles?

I Fixed trial designs are like ballistic missiles:
I Acquire the best data possible a priori, do the calculations, and

fire away
I They then hope their estimates are correct and the wind

doesn’t change direction or speed

I Adaptive trials are like guided missiles:
I Adaptively change course or speed depending on new

information acquired
I More likely to hit the target
I Less likely to cause collateral damage
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Introduction

Interim analyses in clinical trials

I Interim analyses for stopping/continuing trials are one form of
adaptive trials

I Various metrics for decisions of stopping
I Frequentist: Multi-stage, group sequential designs, conditional

power
I Bayesian: Posterior distributions, predictive power, Bayes

factors

I Question: Why and when should I use Bayesian predictive
probabilities for interim monitoring?

I Clinical Trials 2014: Saville, Connor, Ayers, Alvarez
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Introduction

Questions addressed by interim analyses

1. Is there convincing evidence in favor of the null or alternative
hypotheses?

I evidence presently shown by data

2. Is the trial likely to show convincing evidence in favor of the
alternative hypothesis if additional data are collected?

I prediction of what evidence will be available later

I Purpose of Interims
I ethical imperative to avoid treating patients with ineffective or

inferior therapies
I efficient allocation of resources
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Introduction

Predictive Probability of Success (PPoS)

I Definition: The probability of achieving a successful
(significant) result at a future analysis, given the current
interim data

I Obtained by integrating the data likelihood over the posterior
distribution (i.e. we integrate over future possible responses)
and predicting the future outcome of the trial

I Efficacy rules can be based either on Bayesian posterior
distributions (fully Bayesian) or frequentist p-values (mixed
Bayesian-frequentist)
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Introduction

Calculating predictive probabilities via simulation

1. At an interim analysis, sample the parameter of interest θ
from the current posterior given current data X(n).

2. Complete the dataset by sampling future samples X(m),
observations not yet observed at the interim analysis, from the
predictive distribution

3. Use the complete dataset to calculate success criteria
(p-value, posterior probability). If success criteria is met (e.g.
p-value < 0.05), the trial is a success

4. Repeat steps 1-3 a total of B times; the predictive probability
(PPoS) is the proportion of simulated trials that achieve
success
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Futility

Futility - Possible definitions

1. A trial that is unlikely to achieve its objective (i.e. unlikely to
show statistical significance at the final sample size)

2. A trial that is unlikely to demonstrate the effect it was
designed to detect (i.e. unlikely that Ha is true)
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Futility

Illustrative Example: Monitoring for futility

I Consider a single arm Phase II study of 100 patients
measuring a binary outcome (favorable response to treatment)

I Goal: compare proportion to a gold standard 50% response
rate

I x ∼ Bin(p,N = 100)
p = probability of response in the study population
N = total number of patients

I Trial will be considered a success if the posterior probability
that the proportion exceeds the gold standard is greater than
η = 0.95,

Pr(p > 0.5|x) > η
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Futility

Illustrative Example

I Uniform prior p ∼ Beta(α0 = 1, β0 = 1)

I The trial is a “success” if 59 or more of 100 patients respond

I Posterior evidence required for success:
Pr(p > 0.50|x = 58, n = 100) = 0.944
Pr(p > 0.50|x = 59, n = 100) = 0.963

I Consider 3 interim analyses monitoring for futility at 20, 50,
and 75 patients
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Futility

Notation

I Let j = 1, ..., J index the jth interim analysis

I Let nj be the number of patients

I xj = number of observed responses

I mj = number of future patients

I yj = number of future responses of patients not yet enrolled
i.e. n = nj + mj and x = xj + yj
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Futility

First Interim analysis

I Suppose at the 1st interim analysis we observe 12 responses
out of 20 patients (60%, p-value = 0.25)

I Pr(p > 0.50|x1 = 12, n1 = 20) = 0.81, and 47 or more
responses are needed in the remaining 80 patients (≥ 59%) in
order for the trial to be a success

I y1 ∼Beta-binomial(m1 = 80, α = α0 + 12, β = β0 + 8)

I PPoS = Pr(y1 ≥ 47) = 0.54

I Should we continue?
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Futility

Second Interim analysis

I 2nd interim analysis: 28 responses out of 50 patients (56%,
p-value=0.24)

I Posterior Probability = 0.81

I Predictive Probability of Success = 0.30

I 31 or more responses are needed in the remaining 50 patients
(≥ 62%) in order to achieve trial success.

I Should we continue?
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Futility

Third Interim analysis

I 3rd interim analysis: 41 responses of 75 patients (55%,
p-value = .24)

I Posterior Probability = 0.81

I Predictive Probability of Success = 0.086

I 18 or more responses are needed in the remaining 25 patients
(≥ 72%) in order to achieve success

I Should we continue?

I The posterior estimate of 0.80 (and p-value of 0.24) means
different things at different points in the study relative to trial
“success”
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Futility

Table

Table: Illustrative example

nj xj mj y∗
j p-value Pr(p > 0.5) PPoS

20 12 80 47 0.25 0.81 0.54
50 28 50 31 0.24 0.80 0.30
75 41 25 18 0.24 0.79 0.086
90 49 10 10 0.23 0.80 0.003
nj and xj are the number of patients and successes at interim analysis j
mj = number of remaining patients at interim analysis j
y∗
j = minimum number of successes required to achieve success

PPoS= Bayesian predictive probability of success
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Futility

Graphical representation
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Futility

Mapping PPoS to posterior probabilities

I Suppose in our example, the trial is stopped when the PPoS is
less than 0.20 at any of the interim analyses

I Power = 0.842
I Type I error rate = 0.032 (based on 10,000 simulations)

I Equivalently, we could choose the following posterior futility
cutoffs

I < 0.577 (12 or less out of 20)
I < 0.799 (28 or less out of 50)
I < 0.897 (42 or less out of 75)

I Exactly equivalent to stopping if PPoS < 0.20
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Futility

Predictive vs. posterior probabilities

I In simple settings where we can exactly map posterior and
predictive probabilities: computational advantages of using
the posterior probabilities

I In more complicated settings, it can be difficult to align the
posterior and predictive probability rules

I It is more straightforward to think about “reasonable”
stopping rules with a predictive probability

I Predictive probabilities are a metric that investigators
understand (“What’s the probability of a return on this
investment if we continue?”), so they can help determine
appropriate stopping rules
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Futility

Group sequential bounds

I Group sequential methods use alpha and beta spending
functions to preserve the Type I error and optimize power

I Given working example, an Emerson-Fleming lower boundary
for futility will stop for futility if less than 5, 25, or 42
successes in 20, 50, 75 patients, respectively.

I Power of design is 0.93, Type I error is 0.05
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Futility

Emerson-Fleming lower boundary
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Figure: Emerson-Fleming lower boundary for futility
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Futility

Emerson-Fleming lower boundary

I The changing critical values are inherently trying to adjust for
the amount of information yet to be collected, while
controlling Type I and Type II error

I The predictive probabilities of success at 5/20 or 25/50
(which both continue with Emerson-Fleming boundaries) are
0.0004 and 0.041

I Are these reasonable stopping rules?
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Futility

Futility: Repeated testing of alternative hypothesis

I Assess current evidence against targeted effect (Ha) using
p-values

I At each interim look, test the alternative hypothesis at alpha
= 0.005 level

I Requires specification of Ha, e.g. Ha : p1 = 0.65
I Example: Stop for futility if less than 8, 24, 38, or 47

responses at 20, 50, 75, or 90 patients
I Predictive Probabilities are 0.031, 0.016, 0.002, and 0.0, where

above rules allow continuation
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Futility

Conditional Power: Example

I Definition: The probability of a successful trial at the final
sample size, given observed data and an assumed effect size

I Commonly used effect sizes: original Ha (CPHa), current MLE
(CPMLE), and null hypothesis H0 (CPH0)

I Even when the likelihood that 0.65 is the true response rate
becomes less and less likely during the course of the trial,
CPHa continues to use 0.65

I CPMLE uses the MLE at each analysis but fails to incorporate
the variability of that estimate

I CPH0 only gives the probability assuming that the treatment
doesn’t work (given observed data)
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Futility

Table

Table: Illustrative example

nj xj mj y∗
j p-value Pr(p > 0.5) CPHa CPMLE PPoS

20 12 80 47 0.25 0.81 0.90 0.64 0.54
50 28 50 31 0.24 0.80 0.73 0.24 0.30
75 41 25 18 0.24 0.79 0.31 0.060 0.086
90 49 10 10 0.23 0.80 0.013 0.002 0.003
nj and xj are the number of patients and successes at interim analysis j
mj = number of remaining patients at interim analysis j
y∗
j = minimum number of successes required to achieve success

CPHa and CPMLE: Conditional power based on original Ha or MLE
PPoS= Bayesian predictive probability of success
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Futility

Conditional Power
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Figure: Conditional Power given 12 success in 20 patients
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Futility

Predictive probabilities

I Predictive probabilities are weighted averages of the the
conditional powers across the current probability that each
success rate is the true success rate (i.e. weighted by the
posterior)

I Hence, predictive probabilities are a much more realistic value
of predictive trial success than any single estimate of
conditional power
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Efficacy

Efficacy

I Success: There is convincing evidence that the treatment is
effective

I Question naturally corresponds to evidence currently available
I If outcomes of accrued patients are all observed, prediction

methods are not needed

I If we use PPoS to monitor for early success, one typically
needs to already meet the posterior success criteria

I e.g., if PPoS > 0.95 at interim look, typically implies
Pr(p > p0|xj) > 0.95, which implies trial success
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Efficacy

Efficacy: Delayed outcomes

I Using PPoS for stopping for efficacy is primarily useful for
delayed outcomes, e.g. time to event

I With incomplete data, question of success becomes a
prediction problem

I At an interim analysis, PPoS with the current patients (some
of which have yet to observe their complete follow-up time)

I Trial stopped for expected efficacy, current patients followed
until outcomes are observed, final analysis completed
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Efficacy

Efficacy: Delayed outcomes

I Traditional group sequential methods
I If trial is stopped due to an efficacy boundary being met,

typically a final analysis is done after all lagged outcomes are
observed on the current set of patients

I Efficacy is determined by interim, not final analysis
I Hence, DMC’s may be unlikely to stop trials for efficacy unless

the data are convincing and p-value would not lose significance
if a few negative outcomes occurred in the follow-up period

I Predictive probabilities formalize this decision making process,
i.e. stop trials for efficacy if they currently show superiority
and are likely to maintain superiority after remaining data are
collected

29 / 40



Efficacy

Efficacy: Time-lag with auxiliary variables

I PPoS can be used to model a final primary outcome using
earlier information that is informative about the final outcome

I For example, if the primary outcome is success at 24 months,
many of the accrued patients at a given interim analysis will
not have 24 months of observation time

I However, there exists information on the success at 3, 6, and
12 months that is correlated with the outcome at 24 months

I These earlier measures are auxiliary variables, and can be used
to model various types of primary outcomes, including binary,
continuous, time-to-event, and count data
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Efficacy

Efficacy: Time-lag with auxiliary outcomes

I These auxiliary variables may not be valid endpoints from a
regulatory perspective

I Incorporates partial information into the predictive distribution
of the final outcome to provide a more informative predictive
probability of trial success

I If the predictive probability at final N is sufficiently small, the
trial can be stopped for futility immediately

I If the predictive probability with current n and more follow-up
is sufficiently large, one can stop accrual and wait until the
primary outcome is observed for all currently enrolled patients,
at which point trial success is evaluated

I Note the auxiliary variables do not contribute to the final
analysis

31 / 40



Efficacy

Efficacy

I Time-lags are extremely common in clinical trials; very rare to
observe an outcome immediately upon enrollment

I Other competing methods (group sequential, conditional
power, posterior probabilities, etc.) are not easily adapted to
account for time-lags or auxiliary variables

I Predictive probabilities are also extremely useful for
calculating predicted success of future phase III study while in
a phase II study
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PPoS vs. Posterior Probabilities

Relationship between predictive probability and posterior

I When an infinite amount of data remains to be collected,
PPoS equals the current posterior estimate of efficacy,
Pr(p > p0|xj , nj)

I For example, suppose an interim analysis yields 25 responses
from 50 patients. The current estimate of
Pr(p > 0.50|x = 25, n = 50) equals 0.50

I If the trial claims efficacy for a posterior cutoff of 0.95, i.e.
Pr(p > 0.50|N) ≥ 0.95, then for a maximum sample size
N = 100 patients, PPoS equals 0.04

I Given the same interim data, PPoS for maximum sample sizes
of 200, 500, 1000, and 10000 patients are 0.17, 0.29, 0.35,
and 0.45 (converging to 0.50 as N approaches infinity)
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PPoS vs. Posterior Probabilities

Predictive Probability vs. Posterior
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PPoS vs. Posterior Probabilities

Predictive Probability vs. Posterior

I For a fixed maximum sample size (e.g. N = 100) and a fixed
posterior probability, PPoS converges to either 0 or 1 as the
interim sample size increases

I Logical because the trial success or failure becomes more
certain as trial nears its end
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PPoS vs. Posterior Probabilities

Predictive Probability vs. Posterior
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Summary

Computational challenges

I Simulations are typically used to calculate predictive
probabilities; can be problematic for calculating operating
characteristics

I Let K trials be needed to assess operating characteristics, J
the number of interim analyses, and B the number of
simulations required to calculate a single predictive probability

I Trial requires J × B × K imputations for a single setting of
parameters (e.g. under H0)

I For example, a trial with 3 interim analyses and B =1000, the
trial would require a total of 3× 1000× 1000 =3,000,000
simulated complete data sets

I Further complicated if Bayesian posterior distributions are not
available in closed form (MCMC)
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Summary

Prior distributions

I Large literature exists on selection of prior distributions for
Bayesian analyses of clinical trials

I Common choices: “non-informative” prior, skeptical prior,
enthusiastic prior, and historical prior

I Clinical trial designs using predictive probabilities for interim
monitoring do not claim efficacy using predictive probabilities;
the claim of efficacy is based on either Bayesian posterior
probabilities or frequentist criteria (p-values)

I Same discussions of prior distributions in the literature are
applicable to Bayesian designs with interim monitoring via
predictive probabilities
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Summary

Prior distributions

I One can calculate the predictive probability of trial success at
interim looks using historical prior information, even though
the final analysis may use the flat or skeptical prior

I For example, simulating complete data sets under the
historical prior, but using the flat or skeptical prior to
determine whether each simulated trial is a success

I Uses all available information to more accurately predict
whether the trial will be a success, but maintain objectivity or
skepticism in the prior for the final analysis

I Hence a historical (i.e. “honest”) prior can be more efficient
in making decisions about the conduct of a trial
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Summary

Conclusion

I Predictive probabilities
I Closely align with the clinical decision making process,

particularly with prediction problems such as futility, efficacy
monitoring with lagged outcomes, and predicting success in
future trials

I Thresholds can be easier for decision makers to interpret
compared to those based on posterior probabilities or p-values

I Avoids illogical stopping rules
I In many settings, the benefits are worth the computational

burden in designing clinical trials
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